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A definition of the local atomic strain increments in three dimensions 
and an algorithm for computing them is presented. An arbitrary 
arrangement of atoms is tessellated into Delaunay tetrahedra, identi- 
fying interstices, and Voronoi polyhedra, identifying atomic domains. 
The deformation gradient increment tensor for interstitial space is 
obtained from the displacement increments of the corner atoms of 
Delaunay tetrahedra. The atomic site strain increment tensor is then 
obtained by finding the intersection of the Delaunay tetrahedra with the 
Voronoi polyhedra, accumulating the individual deformation gradient 
contributions of the intersected Delaunay tetrahedra into the Voronoi 
polyhedra. An example application is discussed, showing how the 
atomic strain clarifies the relative local atomic movement for a polymeric 
glass treated at the atomic level. 0 1992 Academic Press, Inc. 

boundaries, such as a glass. Deng et al. [ 1 ] published a 
study on a two-dimensional system and used the notion of 
atomic strain, but the method employed cannot be extended 
to analyzing the topology of three-dimensional assemblies. 
Many other workers, such as Clarke and Brown [Z], 
Maeda and Takeuchi [3], and Srolovitz et al. [4], have 
studied atomic displacements in three-dimensional glasses, 
without using atomic strain as a means to isolate regions of 
high atom mobility. As far as we know, atomic strain has 
not been defined for three-dimensional systems nor has an 
algorithm that calculates atomic strain been developed for 
such systems. 

1. INTRODUCTION 

Computer modelling provides coordinates of all atoms of 
model systems at any time. One fundamental property of 
interest is how the local atomic structure changes in 
response to a globally applied “driving force,” for example, 
a stress or strain increment. Scrutinizing atomic dis- 
placements has been the usual method to study how local 
structure changes, but this method does not lend itself to 
structurally meaningful conclusions, especially in three- 
dimensional systems. Atomic displacements show the dis- 
tance and direction of movement for each atom, but gives 
no information on the change in position of an atom with 
respect to its neighbors. To study the motion of atoms in 
response to an applied driving force in a meaningful way, we 
must define an “atomic strain tensor.” 

In Section 2, we briefly review two alternative and com- 
plementary ways of tessellating space, as a means to define 
and clarify the terms used in later sections. We define 
the “atomic strain” in Section 3. Section 4 explores the 
topological details further in order to implement atomic 
strain. In Section 5, we outline the algorithm explicitly. 
Finally, Section 6 sketches out an example application of 
the program to the deformation of a polymeric glass, the 
details of which will be published elsewhere. 

2. TESSELLATION OF SPACE 

The atomic strain requires a precise way to divide the 
volume allotted to an atom and an unambiguous way to 
identify the interstices in a system. The Voronoi and 
Delaunay tessellations are methods that meet this require- 
ment. Our development builds on the work of Tanemura et 
al. [S]. 

The algorithm presented below is best suited for the Let a set of distinct points (“atoms”) be distributed in a 
deformation of a dense, disordered system with periodic parallelepiped (“box”) of some finite size. Assume that the 
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entirety of three-dimensional space is covered by replicas of 
this box. The region in space closest to a given atom defines 
the Voronoi polyhedron enclosing the atom. These 
polyhedra are convex figures that are bounded by planar 
faces. A “face plane” between two atoms is obtained by 
drawing a line segment connecting the two atoms, and then 
constructing a plane that is the perpendicular bisector to the 
line segment. Any point that lies on this face plane is equi- 
distant to the two atoms. Where two face planes meet 
defines an edge, and where three face planes meet forms a 
corner. Thus, the “face” is a region of the face plane that is 
bounded by the edges formed by the intersections with other 
face planes. The existence of a common face is the criterion 
used to determine “neighboring atoms.” The set of 
polyhedra constructed around all atoms fills space in the 
box without any gaps or overlaps. 

Joining all neighboring atoms by straight lines produces 
a space network. The set of four atoms that are neighbors to 
each other forms a tetrahedron. The set of tetrahedra for a 
given set of atoms also tessellates space and is called the 
Delaunay tessellation. We term the elementary tetrahedron 
in this tessellation the Delaunay tetrahedron and abbreviate 
it DT. The tetrahedra also have planar faces, edges, and 
corners: the face of a DT is a part of a plane defined by the 
positions of three atoms, bounded by the edges formed 
by line segments joining the atoms; the corners are the 
positions of the atoms. “Neighboring DTs” are defined to 
be any two DTs that share a face. The set of DTs that all 
contain a given atom is a closed figure around that atom, 
not necessarily convex. 

Any four points that do not lie on a plane define a sphere, 
and if a sphere is constructed that passes through the vertex 
atoms of a Delaunay tetrahedron, the center of the sphere is 
equidistant to the four atoms. Thus, the center defines a 
corner shared by the four Voronoi polyhedra containing the 
corner atoms. The center of the sphere need not lie inside the 
tetrahedron. The two tessellations, Voronoi and Delaunay, 
are dual to each other: the Voronoi tessellation describes 
space that “belongs” to the atoms, while the Delaunay 
tessellation describes the interstitial regions that are 
bounded by four atoms. Both tessellations are unique for a 
given set of atoms. The algorithm used for both tessellations 
is essentially that of Tanemura et al. [S], modified to handle 
an arbitrary, non-orthogonal periodic parallelepiped. 

3. ATOMIC STRAIN 

In the macroscopic, continuum sense, a strain increment 
is defined by the change in length and orientation of an 
infinitesimal line segment and is a function of position in the 
body. On the atomic level, only the change in the relative 
position of the neighboring atoms is unambiguously 
definable, and in interstitial regions, the strain must be 
regarded as constant. Because the tetrahedra found by the 
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FIG. 1. Displacement and distortion of a Delaunay tetrahedron 

Delaunay tessellation are necessarily empty of any other 
atoms, they provide a convenient geometrical basis on 
which to define strain increments on the atomistic scale. 

Consider such an interstitial region between the atoms in 
a Delaunay tetrahedron shown in Fig. 1, where the atoms 
have experienced an increment of movement. Take atom 0 
to be the atom of interest and place its original position at 
the origin. The displacement of each atom is si, where i is the 
atom number. The relative displacement ui of atom i is then 
si - sO. We define the deformation gradient tensor F inside 
a tetrahedron by differentiating the relative displacements u 
of the four corner atoms of the tetrahedron, with respect to 
the three directions of the Cartesian coordinate system, x: 

F=U 
ai 

The relative motion of the atoms of the DT can provide no 
further information regarding higher order derivatives of 
displacement, and so the displacement gradient inside the 
tetrahedron has been assumed to be constant. The displace- 
ment field u so defined is piecewise continuous along the 
faces and edges of each DT. 

The displacement gradient defined in Eq. (1) is conser- 
vative and correct, but is associated with interstitial space, 
not with atoms. An atom belongs typically to 20-30 DTs, 
each with a different shape, volume, and displacement 
gradient; we are interested in the resulting strain increments 
associated with atoms, not with interstices. Thus, the infor- 
mation in Eq. (1) needs to be re-allocated proportionally 
according to the volume belonging to the atoms. Therefore, 
to find the deformation gradient of an atom, it is necessary 
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to identify all the DTs sampled by the Voronoi polyhedron 
constructed around the atom. Symbolically, we find the 
deformation gradient F, for atom i by the weighted sum 
over all DTs that the Voronoi polyhedron intersects; i.e., 

Throughout the procedure, there are many places where 
conservation laws are used to ensure that an operation 
is done correctly. The most sensitive is that the volume 
weighted sum of the local atomic level strains must exactly 
equal the imposed strain on the whole system. It has been 
found that if a single DT is changed or omitted from the 
inputted DT set (in the test data sets, there were about 
3100 DTs), the summation of the atomic deformation 
gradients deviates from the system gradient by about 1%. 
This is a large, obvious error, compared to the computer 
working precision of about 10-15; the strain program 
outlined here is quite sensitive to any errors in tessellating 
the system. 

DTs 

Fi = 1 kqF,, 

where k, is the volume fraction of the Voronoi polyhedron 
that falls inside the jth DT. By using the initial position of 
the atom i as the origin, we have used an infinitesimal 
Lagrangian representation to find deformation gradients F, 
of the DTs. To be consistent with this, the intersecting 
volume fraction k, needs to be evaluated from the initial 
positions of the atoms. The atomic strain increment tensor 
ei for atom i is then found from the atomic deformation 
gradient Fi by subtracting out the rigid-body rotations in 
the usual way. Of this strain tensor, two scalar invariants 
are of special interest, the local dilatation E, and the local 
deviatoric distortion y, which are defined as: 

a=Trc (3) 

y2 = fTr(E - i&I)*. (4) 

4. THE APPROACH TO THE PROBLEM 

We address the problem using the original structure as 
the “ground state,” and the strained structure is compared 
to the original. The intersecting volume fraction k, is found 
from the ground state, so that the detailed Voronoi and 
Delaunay constructions for the original structure are 
needed as input. The information required is the atom 
neighbor list for each atom, the volume of the Voronoi 
polyhedra, and the set of Delaunay tetrahedra. The number 
of atoms in the original structure must equal the number of 
atoms in the strained structure. 
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There are two parts to find the atomic displacement 
gradient, calculating F for each DT and finding the intersec- 
tions k,. Finding the deformation gradient for each DT is 
straightforward, and this is calculated at the beginning of 
the program. The major effort in the algorithm is to find the 
intersections of all DTs with a single Voronoi polyhedron. 
We call the atom that the Voronoi polyhedron is formed 
around the “central atom.” This procedure is repeated for 
all atoms in the system. 

If a DT intersects a Voronoi polyhedron, it is apparent 
that the DT must enter the Voronoi polyhedron at one or 
more Voronoi face(s). Consider the intersection of a DT 
with a plane, shown in Fig. 2. A DT can intersect the plane 
only when the corners of the tetrahedron lie on both sides of 
the plane. The two possibilities are: two atoms on each side, 
or one atom on one side and three atoms on the other. The 
illustration shows that the intersection must be either a 
three- or four-sided polygon. Because the set of DTs 
tessellates space, the intersection of DTs with any plane 
must tessellate the plane. We do not consider the degenerate 
case when an atom sits exactly on the plane; rather, if an 
atom does happen to lie on the plane, we shall assume that 
it lies on the positive side, as defined by the direction of the 
plane normal. The error introduced by this simplification is 
within the machine working precision. 

FIG. 2. The intersection of a tetrahedron with a plane. 
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FIG. 3. Voronoi polyhedron around atom M 1. A pyramidal figure formed by connecting a face (shown in bold) to the central atom has been cut 
out on the right. 

Since an intersecting DT must penetrate a Voronoi 
polyhedron at a face, it is natural to further divide the 
polyhedron into composite pyramidal figures-one 
pyramid for each face of the polyhedron. The base plane of 
the pyramid is then the Voronoi face, and the “peak” of the 
pyramid is the position of the central atom. Figure 3 shows 
the Voronoi polyhedron surrounding atom A4 1 with such a 
composite pyramid cut out for closer inspection. Triangular 
side faces of the pyramid are formed by joining the edges of 
the face to the apex. Two such pyramids inside a Voronoi 

polyhedron that have a common edge share a side face. It is 
evident that the pyramids so constructed completely cover 
the volume without overlap inside any given Voronoi 
polyhedron. 

In Fig. 4 the face that was cut out in Fig. 3 is shown in 
greater detail. The two atoms that share the face are shown, 
atom Ml is below, behind the face plane, and atom H3 is 
above the plane. Note that the face does not intersect the 
line segment connecting the two atoms; this was found to be 
a frequent occurrence. The corners of the face are labeled 

FIG. 4. Detail of the face cut out in Fig. 3. The points Fl , . . . . F6 are the corners of the face, and the bold lines between the corners are the edges. 
The face is shared by Voronoi polyhedra formed around atoms Ml and H3. The atom Ml is behind the plane, atom H3 is in front. The dashed lines 
all he in the face plane, indicating where various contributing DTs intersect the Voronoi face. 
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FIG. 5. (a) The intersection of a DT with the Voronoi face shown in Fig. 3 and 4. The atoms Ml, H211, A4454 lie behind the plane, and atom M76 
is in front of the plane. (b) The “subpyramid” formed by the intersecting face-DT area, shown in bold. 

FIG. 6. The subpyramid using the same intersection between the DT and the face seen in Fig. 4, but using the atom H3 as the central atom peak, 
instead of atom M 1. The atoms M 1, H211, and M454 lie behind the plane, and atoms H3 and M76 are in front. The face has been rotated slightly from 
Fig. 4. 
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Fl , . . . . F6. The tessellating three- and four-sided figures 
formed by the dashed lines all lie in the face plane and are 
the intersections of DTs that have some part falling inside 
the face, which will make a contribution to the strain of 
atom M 1. 

The composite pyramid that was formed from a Voronoi 
face may be further divided into more elementary “sub- 
pyramids,” using the areas of the dashed DT intersections 
that lie within the face as the bases. For example, Fig. 5a 
focuses on the DT intersecting the face that contains the 
corner F2 of the same face seen in Figs. 3 and 4. We take 
atom M 1 to be the central atom; for clarity the neighboring 
atom H3 has been omitted. The DT that intersects with the 
face is made up of atoms {Ml, M76, H211, M454j, shown 
as light dashed lines. Atoms Ml, H211, and M454 lie 
below, behind the face plane, while atom M76 is above the 
plane. The DT intersection with the face plane is shown as 
a heavy dashed line. The base of the subpyramid formed by 
the intersection area is shown by the bold line in Fig. 5b. 
The subpyramid is precisely the intersection of the DT with 
the Voronoi face pyramid. 

Supposing now that the central atom is not atom Ml, as 
assumed in Fig. 5, but the other, neighboring atom H3 (see 
Fig. 4). This situation is illustrated in Fig. 6, focusing now 
on the same face shown in Fig. 3, 4, and 5, but with some 
enlargement and a slight rotation. The pyramids formed on 
either side of the face are mirror images, so their volumes 
must be equal. Atom Ml is still below, behind the face 
plane, and atom H3 is above. The same intersecting DT 
(Ml, M76, H211, M454) is shown as in Fig. 5a, where 
H211 and M454 are behind the plane, and M76 is above, 
in front of the plane. The central atom H3 is not a member 
of this intersecting DT. The heavy dashed lines in Fig. 6 
form the subpyramid base, as shown in Fig. 5b; the two sub- 
pyramids in Figs. 5b and 6 are mirror images, so again, their 
volumes must be equal. Starting at the base of the sub- 
pyramid and following it to the peak at the central atom 
H3, the subpyramid emerges from the DT that contains 
the base, into a neighboring DT: the DT face formed by 
the atoms {Ml, M76, M454) is where the subpyramid 
emerges. The edges of the subpyramid are drawn with 
medium dashed lines behind this “exiting” face, inside the 
DT that contains the base; outside the DT, in front of the 
exiting DT face, the subpyramid edges are drawn with solid 
lines. The intersection of the DT face {Ml, M76, M454) 
and the subpyramid is also shown with sojid lines. The part 
of the subpyramid inside the DT that contains the base 
(drawn with dashed lines) is the intersection of the DT 
(Ml, M76, H211, M454) with the Voronoi face pyramid. 
The remaining part of the subpyramid forms a new, smaller 
sub-subpyramid, with its base on the exiting DT face plane. 

The subpyramid illustrated in Fig. 6 enters a new DT that 
does not contain the base. This must be so for every DT that 
does not contain the central atom but does intersect the 

FIG. 7. Two-dimensional example of an obtuse Voronoi polygon. The 
atoms are the Wed circles, the dashed lines are Delaunay triangles, and the 
enclosing Voronoi polygon is shown by the heavy solid line. 

Voronoi face, because the set of DTs that all contain a given 
atom form a closed figure about that atom. The intersection 
of a DT with a Voronoi face that does not contain the 
central atom indicates an “obtuse” Voronoi polyhedron, a 
polyhedron that extends beyond the enclosing figure formed 
from the DTs. A two-dimensional analogy is shown in 
Fig. 7. Obtuse Voronoi polyhedra were found to be much 
more common in three-dimensional systems than in two- 
dimensional systems. Returning to the sub-subpyramid 
defined in Fig. 6, starting at the base and following it to the 
central atom peak, it is necessary to identify the neighbor- 
ing DT that contains the new base. Supposing that this 
neighboring DT also does not contain the central atom H3, 
the sub-subpyramid must emerge from this DT as well, and 
another subpyramid piece like the one seen inside the DT in 
Fig. 6 will be constructed. This will spawn yet another sub- 
sub-subpyramid. This procedure is repeated until the sub- 
pyramid finally enters a DT that contains the central atom. 
This DT will contain the apex, and thus there will be no 
more “exits.” 

5. ALGORITHM 

I. Initialization. Input (A}, the positions of the set of 
atoms; {N}, the neighbor list for each atom; IQ>, the 
volume fractions of the Voronoi polyhedra; and {T}, 
the set of DTs for the “original” structure. Input (B}, the 
positions of the atoms for the “strained” structure. 

A. For each tetrahedron T, in { T}, find: 
1. The position of the center of the sphere C, 

that passes through the atoms Ai, Aie T,, 
which corresponds to a corner of a Voronoi 
polyhedron. 



2. The volume fraction of the tetrahedron bji, and 
the displacement gradient F,. Finding the dis- 
placement gradients is the only point in the 
program where the “strained” atom positions 5. 
(B} are used. 

rhis completes the set {S}. This completes the 
;et {S}, the DTs that intersect the face P,, seen 
is dashed lines in Fig. 4. 

B. Check that C dj = 1 and C djFj = Fsystem. 

C. For each T, in {T}, find the DT that contains the 
circumcenter C, that belongs to T,. Denote this set {O(C)}. 6. 

II. Main part of algorithm. For each atom Ai in {A}: 

A. Obtain the set of Voronoi face planes {P}, con- 
structed from the neighbor list {N}. 

B. Define the set {K} to be the “master” list of DTs 
sampled by the Voronoi polyhedron about atom Ai. For 
each DT K,,, in {K}, define the variable k,, the volume 
fraction of K,,, intersected by the Voronoi polyhedron about 
atom Ai. Initially, the set {K} is empty and {ki} is set to 
zero. 

C. For each Voronoi face plane P, in {P}: 

1. Obtain the set of corners {c} of the face, (c} is 
a subset of {C}, and the set of DTs {e(c)} that 
contain these corners, {e(c)} is a subset of 
(O(C)}. The corners must be ordered around 
the face along a single closed path. Start the list 
of DTs sampled by the Voronoi polyhedron face 
{S} by setting {e(c)} + {S}. 

2. Obtain the area of the face ak and the volume 
fraction of the pyramid 0, formed, using the face 
as the base and the central atom as the peak. 

3. Form the edges between the corners by con- 
necting the points c, and c, + , . Starting with the 
DT that contains c,, 0(c,), detect the DT face 
where the edge “exits.” Find the neighboring DT 
to this exit-face. Repeat this procedure until the 
line segment arrives in the DT that contains the 
cornerc,,,, On+l. In this fashion, circle around 
the edge of the face, detecting all DTs that inter- 
sect with the face edge. Add any newly detected 
DTs to the set {S}. 

For each DT S, in {S}, find the area 6, of the 
Bee contained by the DT intersection. This 
:orresponds to the area traced out by the bold 
.ine in Fig. 5b. Check that the area is conserved, 
that is, C 6, = ak. 
[t is possible that all the corners in {c} lie inside 
1. single DT, in which case the set {0(c)} has only 
lne distinct DT and the set {S) has only one 
:lement. In this case, the Voronoi face edge will 
lever cross into another DT, and the entire face 
s completely contained by the DT in {e(c)}. 
Here, the face area ak iS equal to the intersecting 
DT area 6. 
For each DT S, in (S}, find the volume fraction 
If the subpyramid w, that has the intersecting 
area 6, as the base and the central atom i as the 
summit, as shown in Fig. 5b. 
Form a new set {n} by setting {S} + {z}. This 
gill be the set of DTs that intersect the pyramid 
brmed from the face P,. For each DT n, define 
;he variable z,, the volume fraction of the 
DT-pyramid intersection. Then, for each DT 71, 
n b4, 

1 

7. 

8. 

1 

a. 

b. 

C. 

Check if the central atom Ai E n,. If so, then 
set the volume fraction w, to be the inter- 
secting volume fraction z,, and go on to (c). 
This is the case rendered in Fig. 5. If not, go 
on to (b). 
Further subdivide the subpyramid into parts 
intersected by other DTs, starting at the base, 
as outlined in the Section 4 and seen in Fig. 6. 
Add the pertinent volume fractions to z,. It is 
possible that new DTs will be detected that 
are not found in (z), i.e., DTs which intersect 
the pyramid, but do not intersect the Voronoi 
face. These new DTs are then added to {z}. 
Check that C z, = 0,. Add the volume inter- 
secting the pyramid z, to k,, the volume 
fraction intersecting the Voronoi polyhedra. 

9. Add the DTs in (x} to the “master” DT list {K} 
(if they are not already in (K} ). 

4. Consider a set of atom pairs (A,, A,} that 
represents a DT edge, where A, and A, are on 
opposite sides of the face plane Pk. Form the set 
of DT edges, (e}, from the intersecting DT set 
{S}, such that the intersection of the edge to the 
face plane Fk falls inside the face. Next, from 
{T}, obtain the set of DTs (E} that contain the 
atom pairs found in {e}, i.e., all DTs that share 
the DT edges that fall inside the Voronoi face. 
Add anv DTs in <EJ not in [Sl to the set {Sl. d \ , I I \ I in {T} that Cizii=4j. 

D. Check that C,, k, = Qj, where Qi is the inputted 
volume fraction of the Voronoi polyhedron of atom i. 
Calculate the atomic deformation gradient Fi = C, k,F,. 

III. Finally, check that the atomic displacement 
gradient is conserved for the system by C FiQi= Fsystem, 
and that the volume for all DTs is conserved, i.e., for all Tj 
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6. AN APPLICATION using analytical derivatives. Figure 8 shows such an equi- 
librated structure; the skeletal carbon-carbon bonds are 

This algorithm was used to study the change in structure striped to emphasize the chain backbone. 
of a static, atomistic model of polypropylene, developed by Starting with a structure that is at a minimum energy, a 
Theodorou and Suter [161. The polymer is modelled as small strain step is imposed on the periodic box continua- 
a single chain of atoms, with fixed bond lengths and tion edges, which changes the position of the atoms in the 
bond angles, packed into a periodic parallelepiped, initially parent chain with respect to the positions of the atoms in the 
an 18.15 A cube (total number of atoms=455, degree image chains. Re-minimizing the energy of the system 
of polymerization = 76, temperature = 233 K, density = causes the polymer to seek a new conformation: repeatedly 
0.892 g/cm’). Molecular movement can occur only by straining the box and then minimizing the energy simulates 
rotation around the skeletal C-C bonds. The van der Waals large deformations, in small incremental steps. Since time 

interaction between not directly bonded atoms is modelled does not enter into the description of the system the strain 

by the Lennard-Jones potential energy function; backbone rate is undefined. 
skeletal rotation is associated with a threefold rotational Pure shear strain increments were imposed on the 
potential energy barrier. The methyl groups are lumped periodic box of the structure seen in Fig. 8, and the energy 
together into a single quasi-atom of appropriate size and of the system re-minimized. The imposed incremental strain 
potential parameters; the other hydrogen and carbon atoms tensor was 
are treated explicitly. The initial guess structure is grown by 
a Monte Carlo generation of a chain using the rotational 1.0 0.0 0.0 
isomeric state (RIS) theory, modified to account for long- 
range atomic interactions; the total energy of the system as & = 0.0 [ 1 -1.0 0.0 x 10-3. 

a function of the bond rotation angles is then minimized 0.0 0.0 0.0 

FIG. 8. Relaxed polypropylene structure. The backbone carbon-carbon bonds are shown striped. The large pendant atoms are “methyl” atoms, and 
the small pendant atoms are hydrogen atoms. 
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FIG. 9. Displacement of backbone chain. The original backbone is striped: it is the same structure as that drawn in Fig. 8. The backbone found after 
a strain increment was imposed on the system is shown with plain bonds. 

While the deformation gradient imposed on the periodic 
box does not change the system volume, the algorithm 
presented here is not restricted to constant volume condi- 
tions. In Fig. 9 the backbone movement resulting from 
the imposed shear strain increment is demonstrated. The 
original backbone structure is shown with striped bonds (it 
is exactly the same structure that is shown in Fig. 8); the 
strained backbone is drawn unadorned. The “methyl” and 
hydrogen atoms have been removed for clarity. It is 
apparent that the whole chain moves in a complex way. 
Furthermore, it is impossible to distinguish a large move- 
ment of an atom from a large change of local environment 
because it is difficult to compare the displacement of a 
particular atom to the displacement of the neighbors of 
that atom. 

To better understand the change in local structure, the 
atomic strain tensor for each atom was calculated, using the 
procedure presented above. Because the pendant hydrogen 
and “methyl” atoms were tied to the backbone with 
inextensible bonds at rigid angles, there can be no relative 
movement between the backbone and the pendant groups. 

Accordingly, we add the volume-weighted strains of the 
backbone carbon and pendant side groups together. This is 
the “effective segment unit” strain tensor, from which the 
scalar invariants in Eqs. (3) and (4) were found. Figure 10a 
illustrates the change in volume for each segment, plotted as 
circles of radius proportional to dilatation centered on the 
backbone carbon atoms (dashed circles indicate negative 
dilatation). In Fig. lob the deviatoric distortion invariant is 
plotted. Three clusters of large distortion strains can be 
seen: in the center of the box, in the lower left-hand corner, 
and the lower right-hand side. Other regions, such the upper 
left-hand side, show relatively little distortion or dilatation, 
but can be seen to have large displacement in Fig. 9. The 
regions of large shear strains roughly coincide with the 
regions of large circles of dilatation. Figure 10 clearly 
improves perception of how the local environment has 
changed as a result of the imposed strain increment. 

A detailed analysis of the change in the local atomic struc- 
ture of this and other strain simulations will be published 
elsewhere as part of a comprehensive simulation of plastic 
deformation of glassy polymers at the molecular level. 
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FIG. 10. (a) Dilatation of the effective segment unit, plotted as circles centered on the positions of the backbone carbon atoms. (b) Normal deviatoric 
distortion of the effective segment. 
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Nofe added in proof: The FORTRAN program of the algorithm REFERENCES 
described herein is available on written request. 
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